A study on MVDR beamforming applied to an ESPAR antenna

Rongrong Qian, Mathini Sellathurai, David Wilcox

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)


The adaptive beamforming algorithm-minimum variance distortionless response (MVDR) has been studied based on the electronically steerable parasitic array radiator (ESPAR) antenna. The ESPAR antenna uses a single radio-frequency (RF) front end, and its beamforming is achieved by adjusting reactance loads of parasitic elements coupled to the central active element. In the proposed beamforming method, the MVDR beamformer optimizes weights applied to outputs of beams. The optimization problem is formulated as a second-order-cone programming (SOCP) problem including a Euclidean distance metric to approximate the optimal equivalent weight vector to a feasible solution. Then the ESPAR beampattern design strategy iterates between the SOCP problem and a simple projection of reactance loads. The simulations show that the proposed MVDR beamforming method based on an ESPAR antenna gives a beam steering at the desired direction and placing nulls at the interfering directions, and it converges fast. However, when the desired source is close to the interferer, the output signal-to-interference-plus-noise ratio (SINR) degrades and where we use the interference-plus-noise sample covariance matrix to improve the beamforming performance.

Original languageEnglish
Article number6880345
Pages (from-to)67-70
Number of pages4
JournalIEEE Signal Processing Letters
Issue number1
Early online date21 Aug 2014
Publication statusPublished - 1 Jan 2015


  • Adaptive beamforming
  • MVDR
  • SOCP

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Signal Processing
  • Applied Mathematics


Dive into the research topics of 'A study on MVDR beamforming applied to an ESPAR antenna'. Together they form a unique fingerprint.

Cite this