A study of the unimolecular decomposition of internal-energy-selected furan molecular ions by threshold-photoelectron-photoion coincidence spectroscopy

E. E. Rennie, L. Cooper, C. A F Johnson, J. E. Parker, R. A. Mackie, L. G. Shpinkova, D. M P Holland, D. A. Shaw, M. A. Hayes

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

The unimolecular decomposition of internal-energy-selected furan molecular ions has been studied by means of threshold-photoelectron-photoion coincidence spectroscopy. Monochromatic synchrotron radiation was used as the ionisation source, and the molecular ion internal energy was established through the detection of a threshold electron. A pulsed electric field was applied to extract the ions from the interaction region and direct them towards a time-of-flight mass spectrometer. Breakdown curves were measured for photon energies up to 30 eV, and these have allowed appearance energies for a wide range of fragment ions to be determined. In the threshold region the breakdown curves have been measured for various ion residence times by introducing electronic delays between the detection of the threshold electron and the application of the ion extraction field. The breakdown curves have been modelled using the RRKM (Rice, Ramsperger, Kassel and Marcus)/QET (quasi-equilibrium theory) approach, and this has allowed activation energies and transition state geometries to be deduced. The threshold photoelectron spectra of furan-h4 and furan-d4 have been measured from the ionisation threshold to 28 Ev, and vibrational structure has been observed and assigned in the bands due to the X~2A2, the Ã2B1 and the G~2A1 states. Vibrational progressions discernible between 16.2 and 17.3 eV have been attributed to autoionisation from a p-type Rydberg series converging onto the G~pA1 state ionisation threshold. © 2001 Elsevier Science B.V.

Original languageEnglish
Pages (from-to)149-165
Number of pages17
JournalChemical Physics
Volume263
Issue number1
DOIs
Publication statusPublished - 1 Jan 2001

Fingerprint

Dive into the research topics of 'A study of the unimolecular decomposition of internal-energy-selected furan molecular ions by threshold-photoelectron-photoion coincidence spectroscopy'. Together they form a unique fingerprint.

Cite this