Abstract
We describe a stochastic susceptible–infective–susceptible (SIS) model for transmission of infectious disease through a population, incorporating both direct host–host transmission
and indirect transmission via free-living infectious stages (e.g. environmental bacteria). Existence of a quasi-stationary distribution conditional upon nonextinction of infection is established. A bivariate Ornstein–Uhlenbeck approximation is used to investigate the long-term behaviour of the process conditional upon nonextinction of infection. We show that indirect transmission leads to lower variability in the number of infected hosts present in quasi-stationarity and, consequently, to a greater tendency of infection to persist, compared with a model with direct transmission only and the same average individual infectivity. Some numerical work illustrating these results is presented.
and indirect transmission via free-living infectious stages (e.g. environmental bacteria). Existence of a quasi-stationary distribution conditional upon nonextinction of infection is established. A bivariate Ornstein–Uhlenbeck approximation is used to investigate the long-term behaviour of the process conditional upon nonextinction of infection. We show that indirect transmission leads to lower variability in the number of infected hosts present in quasi-stationarity and, consequently, to a greater tendency of infection to persist, compared with a model with direct transmission only and the same average individual infectivity. Some numerical work illustrating these results is presented.
Original language | English |
---|---|
Pages (from-to) | 726-737 |
Number of pages | 12 |
Journal | Journal of Applied Probability |
Volume | 42 |
Publication status | Published - 2005 |