A Review of Phase Change Materials for the Thermal Management and Isothermalisation of Lithium-Ion Cells

S. Landini, J. Leworthy, T. S. O’Donovan

Research output: Contribution to journalArticle

Abstract

Li-Ion batteries will play an important role in reaching emission targets by sustaining the further integration of renewable energy technologies and Electric Vehicles (EVs) in society. Their performance however is quite sensitive to temperature, leading to capacity fade, acceleration of ageing effect and possible thermal runaway. A Thermal Management System (TMS) should maintain a battery at an operating temperature within an optimal range and maximise temperature uniformity, i.e. approaching an isothermal condition. Many studies have experimentally investigated the electrical performance of Li-Ion batteries under controlled environmental temperatures. Notably however, these controlled conditions do not impose a uniform temperature or a controlled rate of cooling, as a TMS would. From a review of the relevant literature a ratio of the heat generation to the power production is proposed, i.e. quantifying an equivalent electro-chemical efficiency to advance research in this technological area and as additional TMS design metric. Overall, there is enough evidence that 25–30 °C is the best temperature range to minimise the ageing effect while 25–40 °C is typically reported as the general Li-Ion cells operating range. No specific temperature is identified to optimise the cycle electro-chemical efficiency and minimise the ageing effect. Therefore, a TMS should keep Li-Ion batteries within a specific temperature range according to the need for either higher electro-chemical efficiencies (i.e. higher powers and lower heat generation rates) or higher operating life. There are four main thermal management approaches of Li-Ion batteries: air-cooling, liquid-cooling, boiling and Phase Change Materials (PCM). Air cooling is preferred for safety reasons but is less efficient as the rate of heat transfer achievable is relatively low. Forced air cooling can effectively keep the temperature at a preferred level but fails to guarantee a uniform temperature. Liquid cooling is better in terms of heat transfer performance, but it is less safe and can still result in significant thermal gradients within the pack. Boiling effectively keeps Li-Ion cells temperature constant and uniform but can be quite complex to operate and control. Phase Change Materials (PCMs) as a passive cooling approach are proposed as an effective and low-cost isothermalisation technique. However, when Li-Ion batteries are operated under extreme conditions (high ambient temperature, high discharge rates), PCM are not able to recover all latent energy potential during solidification and this leads to possible thermal runaway. Overall, it is clear that no TMS alone is holistically better than others and the choice between air cooling, liquid cooling, boiling and latent heat PCM systems is entirely linked to the specific combination of temperatures, heat rates, cells capacity and geometry. Active PCM systems however, mainly a combination of liquid cooling and passive PCM, show promising results towards an ideal isothermal condition. Also, they introduce the potential to store the thermal energy and use it as needed, converting a Li-Ion cell from an Electrical Energy Storage System (EESS) to a Combined Heat and Power (CHP) system.
Original languageEnglish
Article number100887
JournalJournal of Energy Storage
Volume25
Early online date23 Aug 2019
DOIs
Publication statusPublished - Oct 2019

Fingerprint

Phase change materials
Temperature control
Lithium
Ions
Cooling
Temperature
Boiling liquids
Aging of materials
Heat generation
Liquids
Air
Heat transfer
Latent heat
Electric vehicles
Potential energy
Thermal energy
Thermal gradients
Energy storage
Solidification

Keywords

  • Air-cooling
  • Electro-chemical efficiency
  • Li-Ion batteries
  • Liquid-cooling
  • Phase change materials
  • Thermal management

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Cite this

@article{283262bf54eb44b2a4aa314681d4da1b,
title = "A Review of Phase Change Materials for the Thermal Management and Isothermalisation of Lithium-Ion Cells",
abstract = "Li-Ion batteries will play an important role in reaching emission targets by sustaining the further integration of renewable energy technologies and Electric Vehicles (EVs) in society. Their performance however is quite sensitive to temperature, leading to capacity fade, acceleration of ageing effect and possible thermal runaway. A Thermal Management System (TMS) should maintain a battery at an operating temperature within an optimal range and maximise temperature uniformity, i.e. approaching an isothermal condition. Many studies have experimentally investigated the electrical performance of Li-Ion batteries under controlled environmental temperatures. Notably however, these controlled conditions do not impose a uniform temperature or a controlled rate of cooling, as a TMS would. From a review of the relevant literature a ratio of the heat generation to the power production is proposed, i.e. quantifying an equivalent electro-chemical efficiency to advance research in this technological area and as additional TMS design metric. Overall, there is enough evidence that 25–30 °C is the best temperature range to minimise the ageing effect while 25–40 °C is typically reported as the general Li-Ion cells operating range. No specific temperature is identified to optimise the cycle electro-chemical efficiency and minimise the ageing effect. Therefore, a TMS should keep Li-Ion batteries within a specific temperature range according to the need for either higher electro-chemical efficiencies (i.e. higher powers and lower heat generation rates) or higher operating life. There are four main thermal management approaches of Li-Ion batteries: air-cooling, liquid-cooling, boiling and Phase Change Materials (PCM). Air cooling is preferred for safety reasons but is less efficient as the rate of heat transfer achievable is relatively low. Forced air cooling can effectively keep the temperature at a preferred level but fails to guarantee a uniform temperature. Liquid cooling is better in terms of heat transfer performance, but it is less safe and can still result in significant thermal gradients within the pack. Boiling effectively keeps Li-Ion cells temperature constant and uniform but can be quite complex to operate and control. Phase Change Materials (PCMs) as a passive cooling approach are proposed as an effective and low-cost isothermalisation technique. However, when Li-Ion batteries are operated under extreme conditions (high ambient temperature, high discharge rates), PCM are not able to recover all latent energy potential during solidification and this leads to possible thermal runaway. Overall, it is clear that no TMS alone is holistically better than others and the choice between air cooling, liquid cooling, boiling and latent heat PCM systems is entirely linked to the specific combination of temperatures, heat rates, cells capacity and geometry. Active PCM systems however, mainly a combination of liquid cooling and passive PCM, show promising results towards an ideal isothermal condition. Also, they introduce the potential to store the thermal energy and use it as needed, converting a Li-Ion cell from an Electrical Energy Storage System (EESS) to a Combined Heat and Power (CHP) system.",
keywords = "Air-cooling, Electro-chemical efficiency, Li-Ion batteries, Liquid-cooling, Phase change materials, Thermal management",
author = "S. Landini and J. Leworthy and O’Donovan, {T. S.}",
year = "2019",
month = "10",
doi = "10.1016/j.est.2019.100887",
language = "English",
volume = "25",
journal = "Journal of Energy Storage",
issn = "2352-152X",
publisher = "Elsevier",

}

A Review of Phase Change Materials for the Thermal Management and Isothermalisation of Lithium-Ion Cells. / Landini, S.; Leworthy, J.; O’Donovan, T. S.

In: Journal of Energy Storage, Vol. 25, 100887, 10.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A Review of Phase Change Materials for the Thermal Management and Isothermalisation of Lithium-Ion Cells

AU - Landini, S.

AU - Leworthy, J.

AU - O’Donovan, T. S.

PY - 2019/10

Y1 - 2019/10

N2 - Li-Ion batteries will play an important role in reaching emission targets by sustaining the further integration of renewable energy technologies and Electric Vehicles (EVs) in society. Their performance however is quite sensitive to temperature, leading to capacity fade, acceleration of ageing effect and possible thermal runaway. A Thermal Management System (TMS) should maintain a battery at an operating temperature within an optimal range and maximise temperature uniformity, i.e. approaching an isothermal condition. Many studies have experimentally investigated the electrical performance of Li-Ion batteries under controlled environmental temperatures. Notably however, these controlled conditions do not impose a uniform temperature or a controlled rate of cooling, as a TMS would. From a review of the relevant literature a ratio of the heat generation to the power production is proposed, i.e. quantifying an equivalent electro-chemical efficiency to advance research in this technological area and as additional TMS design metric. Overall, there is enough evidence that 25–30 °C is the best temperature range to minimise the ageing effect while 25–40 °C is typically reported as the general Li-Ion cells operating range. No specific temperature is identified to optimise the cycle electro-chemical efficiency and minimise the ageing effect. Therefore, a TMS should keep Li-Ion batteries within a specific temperature range according to the need for either higher electro-chemical efficiencies (i.e. higher powers and lower heat generation rates) or higher operating life. There are four main thermal management approaches of Li-Ion batteries: air-cooling, liquid-cooling, boiling and Phase Change Materials (PCM). Air cooling is preferred for safety reasons but is less efficient as the rate of heat transfer achievable is relatively low. Forced air cooling can effectively keep the temperature at a preferred level but fails to guarantee a uniform temperature. Liquid cooling is better in terms of heat transfer performance, but it is less safe and can still result in significant thermal gradients within the pack. Boiling effectively keeps Li-Ion cells temperature constant and uniform but can be quite complex to operate and control. Phase Change Materials (PCMs) as a passive cooling approach are proposed as an effective and low-cost isothermalisation technique. However, when Li-Ion batteries are operated under extreme conditions (high ambient temperature, high discharge rates), PCM are not able to recover all latent energy potential during solidification and this leads to possible thermal runaway. Overall, it is clear that no TMS alone is holistically better than others and the choice between air cooling, liquid cooling, boiling and latent heat PCM systems is entirely linked to the specific combination of temperatures, heat rates, cells capacity and geometry. Active PCM systems however, mainly a combination of liquid cooling and passive PCM, show promising results towards an ideal isothermal condition. Also, they introduce the potential to store the thermal energy and use it as needed, converting a Li-Ion cell from an Electrical Energy Storage System (EESS) to a Combined Heat and Power (CHP) system.

AB - Li-Ion batteries will play an important role in reaching emission targets by sustaining the further integration of renewable energy technologies and Electric Vehicles (EVs) in society. Their performance however is quite sensitive to temperature, leading to capacity fade, acceleration of ageing effect and possible thermal runaway. A Thermal Management System (TMS) should maintain a battery at an operating temperature within an optimal range and maximise temperature uniformity, i.e. approaching an isothermal condition. Many studies have experimentally investigated the electrical performance of Li-Ion batteries under controlled environmental temperatures. Notably however, these controlled conditions do not impose a uniform temperature or a controlled rate of cooling, as a TMS would. From a review of the relevant literature a ratio of the heat generation to the power production is proposed, i.e. quantifying an equivalent electro-chemical efficiency to advance research in this technological area and as additional TMS design metric. Overall, there is enough evidence that 25–30 °C is the best temperature range to minimise the ageing effect while 25–40 °C is typically reported as the general Li-Ion cells operating range. No specific temperature is identified to optimise the cycle electro-chemical efficiency and minimise the ageing effect. Therefore, a TMS should keep Li-Ion batteries within a specific temperature range according to the need for either higher electro-chemical efficiencies (i.e. higher powers and lower heat generation rates) or higher operating life. There are four main thermal management approaches of Li-Ion batteries: air-cooling, liquid-cooling, boiling and Phase Change Materials (PCM). Air cooling is preferred for safety reasons but is less efficient as the rate of heat transfer achievable is relatively low. Forced air cooling can effectively keep the temperature at a preferred level but fails to guarantee a uniform temperature. Liquid cooling is better in terms of heat transfer performance, but it is less safe and can still result in significant thermal gradients within the pack. Boiling effectively keeps Li-Ion cells temperature constant and uniform but can be quite complex to operate and control. Phase Change Materials (PCMs) as a passive cooling approach are proposed as an effective and low-cost isothermalisation technique. However, when Li-Ion batteries are operated under extreme conditions (high ambient temperature, high discharge rates), PCM are not able to recover all latent energy potential during solidification and this leads to possible thermal runaway. Overall, it is clear that no TMS alone is holistically better than others and the choice between air cooling, liquid cooling, boiling and latent heat PCM systems is entirely linked to the specific combination of temperatures, heat rates, cells capacity and geometry. Active PCM systems however, mainly a combination of liquid cooling and passive PCM, show promising results towards an ideal isothermal condition. Also, they introduce the potential to store the thermal energy and use it as needed, converting a Li-Ion cell from an Electrical Energy Storage System (EESS) to a Combined Heat and Power (CHP) system.

KW - Air-cooling

KW - Electro-chemical efficiency

KW - Li-Ion batteries

KW - Liquid-cooling

KW - Phase change materials

KW - Thermal management

UR - http://www.scopus.com/inward/record.url?scp=85071014924&partnerID=8YFLogxK

U2 - 10.1016/j.est.2019.100887

DO - 10.1016/j.est.2019.100887

M3 - Article

VL - 25

JO - Journal of Energy Storage

JF - Journal of Energy Storage

SN - 2352-152X

M1 - 100887

ER -