Abstract
Next generation radio telescopes, like the Square Kilometre Array, will acquire an unprecedented amount of data for radio astronomy. The development of fast, parallelisable or distributed algorithms for handling such large-scale data sets is of prime importance. Motivated by this, we investigate herein a convex optimisation algorithmic structure, based on primal-dual forward-backward iterations, for solving the radio interferometric imaging problem. It can encompass any convex prior of interest. It allows for the distributed processing of the measured data and introduces further flexibility by employing a probabilistic approach for the selection of the data blocks used at a given iteration. We study the reconstruction performance with respect to the data distribution and we propose the use of nonuniform probabilities for the randomised updates. Our simulations show the feasibility of the randomisation given a limited computing infrastructure as well as important computational advantages when compared to state-of-the-art algorithmic structures.
Original language | English |
---|---|
Title of host publication | 2016 Proceedings of the 24th European Signal Processing Conference |
Publisher | EURASIP |
Number of pages | 5 |
Publication status | Accepted/In press - 30 May 2016 |
Event | 24th European Signal Processing Conference 2016 - Hilton Budapest, Budapest, Hungary Duration: 29 Aug 2016 → 2 Sept 2016 Conference number: 24 |
Conference
Conference | 24th European Signal Processing Conference 2016 |
---|---|
Abbreviated title | EUSIPCO 2016 |
Country/Territory | Hungary |
City | Budapest |
Period | 29/08/16 → 2/09/16 |