A printed millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates

John Kimionis, Apostolos Georgiadis, Spyridon Nektarios Daskalakis, Manos M. Tentzeris

Research output: Contribution to journalArticlepeer-review

4 Downloads (Pure)

Abstract

Future devices for the Internet of Things will require communication systems that can deliver higher data rates at low power. Backscatter radio—in which wireless communication is achieved via reflection rather than radiation—is a low-complexity approach that requires a minimal number of active elements. However, it is typically limited to data rates of hundreds of megabits per second because of the low frequency bands used and the modulation techniques involved. Here we report a millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates. This radiofrequency front-end consists of a microstrip patch antenna array and a single pseudomorphic high-electron-mobility transistor that supports a range of modulation formats including binary phase shift keying, quadrature phase shift keying and quadrature amplitude modulation. The circuit is additively manufactured with inkjet printing using silver nanoparticle inks on a flexible liquid-crystal polymer substrate. A millimetre-wave transceiver is also designed to capture and downconvert the backscattered signals and route them for digital signal processing. With the system, we demonstrate a bit rate of two gigabits per second of backscatter transmission at millimetre-wave frequencies of 24–28 GHz, and with a front-end energy consumption of 0.17 pJ per bit.

Original languageEnglish
Pages (from-to)439–446
Number of pages8
JournalNature Electronics
Volume4
Issue number6
Early online date10 Jun 2021
DOIs
Publication statusPublished - Jun 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A printed millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates'. Together they form a unique fingerprint.

Cite this