A posteriori error control for finite element approximations of the integral equation for thin wire antennas

C. Carstensen, B. P. Rynne

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

In this paper we discuss a finite element approximation method for solving the Pocklington integro-differential equation for the current induced on a straight, thin wire by an incident harmonic electromagnetic field. We obtain an a posteriori error estimate for finite element approximations of the equation, and we prove the reliability of this estimate. The theoretical results are then used to motivate an adaptive mesh-refining algorithm which generates very efficient meshes and yields optimal convergence rates in numerical experiments. © WILEY-VCH Verlag Berlin GmbH.

Original languageEnglish
Pages (from-to)284-288
Number of pages5
JournalZeitschrift für Angewandte Mathematik und Mechanik
Volume82
Issue number4
DOIs
Publication statusPublished - 2002

Keywords

  • A posteriori error estimate
  • Electromagnetic scattering
  • Finite element approximations
  • Thin wire antennas

Fingerprint Dive into the research topics of 'A posteriori error control for finite element approximations of the integral equation for thin wire antennas'. Together they form a unique fingerprint.

Cite this