A Novel Solar and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors

Jo Bito, Ryan Bahr, Jimmy G. Hester, Syed Abdullah Nauroze, Apostolos Georgiadis, Manos M. Tentzeris

Research output: Contribution to journalArticlepeer-review

159 Citations (Scopus)
360 Downloads (Pure)

Abstract

This paper discusses the design of a novel dual (solar + electromagnetic) energy harvesting powered communication system, which operates at 2.4 GHz ISM band, enabling the autonomous operation of a low power consumption power management circuit for a wireless sensor, while featuring a very good “cold start” capability. The proposed harvester consists of a dual port rectangular slot antenna, a 3-D printed package, a solar cell, an RF-dc converter, a power management unit (PMU), a microcontroller unit, and an RF transceiver. Each designed component was characterized through simulation and measurements. As a result, the antenna exhibited a performance satisfying the design goals in the frequency range of 2.4–2.5 GHz. Similarly, the designed miniaturized RF-dc conversion circuit generated a sufficient voltage and power to support the autonomous operation of the bq25504 PMU for RF input power levels as low as −12.6 and −15.6 dBm at the “cold start” and “hot start” condition, respectively. The experimental testing of the PMU utilizing the proposed hybrid energy harvester confirmed the reduction of the capacitor charging time by 40% and the reduction of the minimum required RF input power level by 50% compared with the one required for the individual RF and solar harvester under the room light irradiation condition of 334 lx.
Original languageEnglish
Pages (from-to)1831-1842
Number of pages12
JournalIEEE Transactions on Microwave Theory and Techniques
Volume65
Issue number5
Early online date15 Feb 2017
DOIs
Publication statusPublished - May 2017

Fingerprint

Dive into the research topics of 'A Novel Solar and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors'. Together they form a unique fingerprint.

Cite this