TY - JOUR
T1 - A Novel Solar and Electromagnetic Energy Harvesting System With a 3-D Printed Package for Energy Efficient Internet-of-Things Wireless Sensors
AU - Bito, Jo
AU - Bahr, Ryan
AU - Hester, Jimmy G.
AU - Nauroze, Syed Abdullah
AU - Georgiadis, Apostolos
AU - Tentzeris, Manos M.
PY - 2017/5
Y1 - 2017/5
N2 - This paper discusses the design of a novel dual (solar + electromagnetic) energy harvesting powered communication system, which operates at 2.4 GHz ISM band, enabling the autonomous operation of a low power consumption power management circuit for a wireless sensor, while featuring a very good “cold start” capability. The proposed harvester consists of a dual port rectangular slot antenna, a 3-D printed package, a solar cell, an RF-dc converter, a power management unit (PMU), a microcontroller unit, and an RF transceiver. Each designed component was characterized through simulation and measurements. As a result, the antenna exhibited a performance satisfying the design goals in the frequency range of 2.4–2.5 GHz. Similarly, the designed miniaturized RF-dc conversion circuit generated a sufficient voltage and power to support the autonomous operation of the bq25504 PMU for RF input power levels as low as −12.6 and −15.6 dBm at the “cold start” and “hot start” condition, respectively. The experimental testing of the PMU utilizing the proposed hybrid energy harvester confirmed the reduction of the capacitor charging time by 40% and the reduction of the minimum required RF input power level by 50% compared with the one required for the individual RF and solar harvester under the room light irradiation condition of 334 lx.
AB - This paper discusses the design of a novel dual (solar + electromagnetic) energy harvesting powered communication system, which operates at 2.4 GHz ISM band, enabling the autonomous operation of a low power consumption power management circuit for a wireless sensor, while featuring a very good “cold start” capability. The proposed harvester consists of a dual port rectangular slot antenna, a 3-D printed package, a solar cell, an RF-dc converter, a power management unit (PMU), a microcontroller unit, and an RF transceiver. Each designed component was characterized through simulation and measurements. As a result, the antenna exhibited a performance satisfying the design goals in the frequency range of 2.4–2.5 GHz. Similarly, the designed miniaturized RF-dc conversion circuit generated a sufficient voltage and power to support the autonomous operation of the bq25504 PMU for RF input power levels as low as −12.6 and −15.6 dBm at the “cold start” and “hot start” condition, respectively. The experimental testing of the PMU utilizing the proposed hybrid energy harvester confirmed the reduction of the capacitor charging time by 40% and the reduction of the minimum required RF input power level by 50% compared with the one required for the individual RF and solar harvester under the room light irradiation condition of 334 lx.
U2 - 10.1109/TMTT.2017.2660487
DO - 10.1109/TMTT.2017.2660487
M3 - Article
SN - 0018-9480
VL - 65
SP - 1831
EP - 1842
JO - IEEE Transactions on Microwave Theory and Techniques
JF - IEEE Transactions on Microwave Theory and Techniques
IS - 5
ER -