TY - JOUR
T1 - A novel methodology for hydrocarbon depth prediction in seabed logging
T2 - Gaussian process-based inverse modeling of electromagnetic data
AU - Daud, Hanita
AU - Mohd Aris, Muhammad Naeim
AU - Mohd Noh, Khairul Arifin
AU - Dass, Sarat Chandra
N1 - Funding Information:
Funding: This work was funded by Yayasan Universiti Teknologi PETRONAS–Fundamental Research Grant (YUTP–FRG) with cost center of 015LC0-055.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/2/7
Y1 - 2021/2/7
N2 - Seabed logging (SBL) is an application of electromagnetic (EM) waves for detecting potential marine hydrocarbon-saturated reservoirs reliant on a source-receiver system. One of the concerns in modeling and inversion of the EM data is associated with the need for realistic representation of complex geo-electrical models. Concurrently, the corresponding algorithms of forward modeling should be robustly efficient with low computational effort for repeated use of the inversion. This work proposes a new inversion methodology which consists of two frameworks, namely Gaussian process (GP), which allows a greater flexibility in modeling a variety of EM responses, and gradient descent (GD) for finding the best minimizer (i.e., hydrocarbon depth). Computer simulation technology (CST), which uses finite element (FE), was exploited to generate prior EM responses for the GP to evaluate EM profiles at “untried” depths. Then, GD was used to minimize the mean squared error (MSE) where GP acts as its forward model. Acquiring EM responses using mesh-based algorithms is a time-consuming task. Thus, this work compared the time taken by the CST and GP in evaluating the EM profiles. For the accuracy and performance, the GP model was compared with EM responses modeled by the FE, and percentage error between the estimate and “untried” computer input was calculated. The results indicate that GP-based inverse modeling can efficiently predict the hydrocarbon depth in the SBL.
AB - Seabed logging (SBL) is an application of electromagnetic (EM) waves for detecting potential marine hydrocarbon-saturated reservoirs reliant on a source-receiver system. One of the concerns in modeling and inversion of the EM data is associated with the need for realistic representation of complex geo-electrical models. Concurrently, the corresponding algorithms of forward modeling should be robustly efficient with low computational effort for repeated use of the inversion. This work proposes a new inversion methodology which consists of two frameworks, namely Gaussian process (GP), which allows a greater flexibility in modeling a variety of EM responses, and gradient descent (GD) for finding the best minimizer (i.e., hydrocarbon depth). Computer simulation technology (CST), which uses finite element (FE), was exploited to generate prior EM responses for the GP to evaluate EM profiles at “untried” depths. Then, GD was used to minimize the mean squared error (MSE) where GP acts as its forward model. Acquiring EM responses using mesh-based algorithms is a time-consuming task. Thus, this work compared the time taken by the CST and GP in evaluating the EM profiles. For the accuracy and performance, the GP model was compared with EM responses modeled by the FE, and percentage error between the estimate and “untried” computer input was calculated. The results indicate that GP-based inverse modeling can efficiently predict the hydrocarbon depth in the SBL.
KW - Computer simulation technology
KW - Electromagnetic data
KW - Gaussian process
KW - Gradient descent
KW - Hydrocarbon depth
KW - Inverse modeling
KW - Seabed logging
UR - http://www.scopus.com/inward/record.url?scp=85100842547&partnerID=8YFLogxK
U2 - 10.3390/app11041492
DO - 10.3390/app11041492
M3 - Article
AN - SCOPUS:85100842547
SN - 2076-3417
VL - 11
JO - Applied Sciences
JF - Applied Sciences
IS - 4
M1 - 1492
ER -