A novel hybrid evolutionary data-intelligence algorithm for irrigation and power production management: Application to multi-purpose reservoir systems

Zaher Mundher Yaseen, Mohammad Ehteram, Md Shabbir Hossain, Chow Ming Fai, Suhana Binti Koting, Nuruol Syuhadaa Mohd, Wan Zurina Binti Jaafar, Haitham Abdulmohsin Afan*, Lai Sai Hin, Nuratiah Zaini, Ali Najah Ahmed, Ahmed El-Shafie

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)
109 Downloads (Pure)

Abstract

Multi-purpose advanced systems are considered a complex problem in water resource management, and the use of data-intelligence methodologies in operating such systems provides major advantages for decision-makers. The current research is devoted to the implementation of hybrid novel meta-heuristic algorithms (e.g., the bat algorithm (BA) and particle swarm optimization (PSO) algorithm) to formulate multi-purpose systems for power production and irrigation supply. The proposed hybrid modelling method was applied for the multi-purpose reservoir system of Bhadra Dam, which is located in the state of Karnataka, India. The average monthly demand for irrigation is 142.14 (10 6 m 3 ), and the amount of released water based on the new hybrid algorithm (NHA) is 141.25 (10 6 m 3 ). Compared with the shark algorithm (SA), BA, weed algorithm (WA), PSO algorithm, and genetic algorithm (GA), the NHA decreased the computation time by 28%, 36%, 39%, 82%, and 88%, respectively, which represents an excellent enhancement result. The amount of released water based on the proposed hybrid method attains a more reliable index for the volumetric percentage and provides a more effective operation rule for supplying the irrigation demand. Additionally, the average demand for power production is 18.90 (10 6 kwh), whereas the NHA produces 18.09 (10 6 kwh) of power. Power production utilizing the NHA's operation rule achieved a sufficient magnitude relative to that of stand-alone models, such as the BA, PSO, WA, SA, and GA. The excellent proficiency of the developed intelligence expert system is the result of the hybrid structure of the BA and PSO algorithm and the substitution of weaker solutions in each algorithm with better solutions from other algorithms. The main advantage of the proposed NHA is its ability to increase the diversity of solutions and hence avoid the worst possible solutions obtained using BA, that is, preventing a decrease in local optima. In addition, the NHA enhances the convergence rate obtained using the PSO algorithm. Hence, the proposed NHA as an intelligence model could contribute to providing reliable solutions for complex multi-purpose reservoir systems to optimize the operation rule for similar reservoir systems worldwide.

Original languageEnglish
Article number1953
JournalSustainability
Volume11
Issue number7
DOIs
Publication statusPublished - 2 Apr 2019

Keywords

  • Bat algorithm
  • Hybrid expert system
  • Multi-purpose system
  • Particle swarm optimization algorithm
  • Water resource management

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'A novel hybrid evolutionary data-intelligence algorithm for irrigation and power production management: Application to multi-purpose reservoir systems'. Together they form a unique fingerprint.

Cite this