A new approach to simulate low salinity water flooding in carbonate reservoir

Abdulla Aljaberi, Mehran Sohrabi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Low salinity water flooding (LSWF) as an enhanced oil recovery method (EOR) has attracted increased attention from oil companies due to its numerous benefits and advantages. It has been confirmed in several studies and laboratory experiments that LSWF has improved oil recovery. However, the underlying mechanism responsible for such an impact is still debatable. All previous studies focused on a geochemical process where fluid-fluid interaction has been overlooked. Recently, some studies have indicated that brine-crude oil (micro-dispersion) interactions play dominant roles in improved oil recovery in carbonate rocks. Nevertheless, at the moment, no commercial simulator can mimic this mechanism from the perspective of fluid interactions. In this work, we investigated whether micro-dispersion is applicable in commercial reservoir simulators through the history matching of two carbonate coreflood experiments. In this part of the investigation, three aspects will be addressed. (i) Develop a correlation of the link between the mechanism (micro-dispersion) in the lab and numerical simulation. (ii) Predict the low salinity relative permeability curves. (iii) History match the experimental data. This paper presents an integrated method of simulating low salinity water floods in carbonate rocks. Two different approaches have been applied to the history matching of unsteady state coreflood experiments. First, numerical simulation was performed to extract the high salinity relative permeability curves (KrHS) of the secondary mode for both experiments. Then, the findings from the first approach and the experimental results were used to develop a new approach for predicting the low salinity relative permeability (KrLS) curves. The new approach was not only used to predict KrLs curves through micro-dispersion but also used as input to history match the tertiary low salinity water floods. An excellent match was obtained using both the numerical simulation model and the new approach for the oil recovery and pressure drop profile, where two different relative permeability sets were generated in this study for each coreflood. The first observation promotes the premise that a history match of a coreflood can be obtained using different sets of relative permeability curves. In contrast, the Corey exponents, residual oil saturations and endpoints are essential parameters in the history matching of LSWF. The results obtained in this study will help to understand the modelling process involved during oil recovery by LSWF and introduce a new approach to model the effect of LSWF.

LanguageEnglish
Title of host publicationSPE Middle East Oil and Gas Show and Conference, 18-21 March, Manama, Bahrain
PublisherSociety of Petroleum Engineers
ISBN (Electronic)9781613996393
DOIs
Publication statusPublished - 2019
EventSPE Middle East Oil and Gas Show and Conference 2019 - Manama, Bahrain
Duration: 18 Mar 201921 Mar 2019

Conference

ConferenceSPE Middle East Oil and Gas Show and Conference 2019
Abbreviated titleMEOS 2019
CountryBahrain
CityManama
Period18/03/1921/03/19

Fingerprint

Carbonates
Recovery
Water
Fluids
Computer simulation
Simulators
Experiments
Rocks
Oils
Pressure drop
Crude oil
Industry

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Fuel Technology

Cite this

Aljaberi, A., & Sohrabi, M. (2019). A new approach to simulate low salinity water flooding in carbonate reservoir. In SPE Middle East Oil and Gas Show and Conference, 18-21 March, Manama, Bahrain [SPE-195081-MS] Society of Petroleum Engineers . https://doi.org/10.2118/195081-MS
Aljaberi, Abdulla ; Sohrabi, Mehran. / A new approach to simulate low salinity water flooding in carbonate reservoir. SPE Middle East Oil and Gas Show and Conference, 18-21 March, Manama, Bahrain. Society of Petroleum Engineers , 2019.
@inproceedings{4c96b5ee4dd14fb19ea73b5d3d0349bc,
title = "A new approach to simulate low salinity water flooding in carbonate reservoir",
abstract = "Low salinity water flooding (LSWF) as an enhanced oil recovery method (EOR) has attracted increased attention from oil companies due to its numerous benefits and advantages. It has been confirmed in several studies and laboratory experiments that LSWF has improved oil recovery. However, the underlying mechanism responsible for such an impact is still debatable. All previous studies focused on a geochemical process where fluid-fluid interaction has been overlooked. Recently, some studies have indicated that brine-crude oil (micro-dispersion) interactions play dominant roles in improved oil recovery in carbonate rocks. Nevertheless, at the moment, no commercial simulator can mimic this mechanism from the perspective of fluid interactions. In this work, we investigated whether micro-dispersion is applicable in commercial reservoir simulators through the history matching of two carbonate coreflood experiments. In this part of the investigation, three aspects will be addressed. (i) Develop a correlation of the link between the mechanism (micro-dispersion) in the lab and numerical simulation. (ii) Predict the low salinity relative permeability curves. (iii) History match the experimental data. This paper presents an integrated method of simulating low salinity water floods in carbonate rocks. Two different approaches have been applied to the history matching of unsteady state coreflood experiments. First, numerical simulation was performed to extract the high salinity relative permeability curves (KrHS) of the secondary mode for both experiments. Then, the findings from the first approach and the experimental results were used to develop a new approach for predicting the low salinity relative permeability (KrLS) curves. The new approach was not only used to predict KrLs curves through micro-dispersion but also used as input to history match the tertiary low salinity water floods. An excellent match was obtained using both the numerical simulation model and the new approach for the oil recovery and pressure drop profile, where two different relative permeability sets were generated in this study for each coreflood. The first observation promotes the premise that a history match of a coreflood can be obtained using different sets of relative permeability curves. In contrast, the Corey exponents, residual oil saturations and endpoints are essential parameters in the history matching of LSWF. The results obtained in this study will help to understand the modelling process involved during oil recovery by LSWF and introduce a new approach to model the effect of LSWF.",
author = "Abdulla Aljaberi and Mehran Sohrabi",
year = "2019",
doi = "10.2118/195081-MS",
language = "English",
booktitle = "SPE Middle East Oil and Gas Show and Conference, 18-21 March, Manama, Bahrain",
publisher = "Society of Petroleum Engineers",
address = "United States",

}

Aljaberi, A & Sohrabi, M 2019, A new approach to simulate low salinity water flooding in carbonate reservoir. in SPE Middle East Oil and Gas Show and Conference, 18-21 March, Manama, Bahrain., SPE-195081-MS, Society of Petroleum Engineers , SPE Middle East Oil and Gas Show and Conference 2019, Manama, Bahrain, 18/03/19. https://doi.org/10.2118/195081-MS

A new approach to simulate low salinity water flooding in carbonate reservoir. / Aljaberi, Abdulla; Sohrabi, Mehran.

SPE Middle East Oil and Gas Show and Conference, 18-21 March, Manama, Bahrain. Society of Petroleum Engineers , 2019. SPE-195081-MS.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - A new approach to simulate low salinity water flooding in carbonate reservoir

AU - Aljaberi, Abdulla

AU - Sohrabi, Mehran

PY - 2019

Y1 - 2019

N2 - Low salinity water flooding (LSWF) as an enhanced oil recovery method (EOR) has attracted increased attention from oil companies due to its numerous benefits and advantages. It has been confirmed in several studies and laboratory experiments that LSWF has improved oil recovery. However, the underlying mechanism responsible for such an impact is still debatable. All previous studies focused on a geochemical process where fluid-fluid interaction has been overlooked. Recently, some studies have indicated that brine-crude oil (micro-dispersion) interactions play dominant roles in improved oil recovery in carbonate rocks. Nevertheless, at the moment, no commercial simulator can mimic this mechanism from the perspective of fluid interactions. In this work, we investigated whether micro-dispersion is applicable in commercial reservoir simulators through the history matching of two carbonate coreflood experiments. In this part of the investigation, three aspects will be addressed. (i) Develop a correlation of the link between the mechanism (micro-dispersion) in the lab and numerical simulation. (ii) Predict the low salinity relative permeability curves. (iii) History match the experimental data. This paper presents an integrated method of simulating low salinity water floods in carbonate rocks. Two different approaches have been applied to the history matching of unsteady state coreflood experiments. First, numerical simulation was performed to extract the high salinity relative permeability curves (KrHS) of the secondary mode for both experiments. Then, the findings from the first approach and the experimental results were used to develop a new approach for predicting the low salinity relative permeability (KrLS) curves. The new approach was not only used to predict KrLs curves through micro-dispersion but also used as input to history match the tertiary low salinity water floods. An excellent match was obtained using both the numerical simulation model and the new approach for the oil recovery and pressure drop profile, where two different relative permeability sets were generated in this study for each coreflood. The first observation promotes the premise that a history match of a coreflood can be obtained using different sets of relative permeability curves. In contrast, the Corey exponents, residual oil saturations and endpoints are essential parameters in the history matching of LSWF. The results obtained in this study will help to understand the modelling process involved during oil recovery by LSWF and introduce a new approach to model the effect of LSWF.

AB - Low salinity water flooding (LSWF) as an enhanced oil recovery method (EOR) has attracted increased attention from oil companies due to its numerous benefits and advantages. It has been confirmed in several studies and laboratory experiments that LSWF has improved oil recovery. However, the underlying mechanism responsible for such an impact is still debatable. All previous studies focused on a geochemical process where fluid-fluid interaction has been overlooked. Recently, some studies have indicated that brine-crude oil (micro-dispersion) interactions play dominant roles in improved oil recovery in carbonate rocks. Nevertheless, at the moment, no commercial simulator can mimic this mechanism from the perspective of fluid interactions. In this work, we investigated whether micro-dispersion is applicable in commercial reservoir simulators through the history matching of two carbonate coreflood experiments. In this part of the investigation, three aspects will be addressed. (i) Develop a correlation of the link between the mechanism (micro-dispersion) in the lab and numerical simulation. (ii) Predict the low salinity relative permeability curves. (iii) History match the experimental data. This paper presents an integrated method of simulating low salinity water floods in carbonate rocks. Two different approaches have been applied to the history matching of unsteady state coreflood experiments. First, numerical simulation was performed to extract the high salinity relative permeability curves (KrHS) of the secondary mode for both experiments. Then, the findings from the first approach and the experimental results were used to develop a new approach for predicting the low salinity relative permeability (KrLS) curves. The new approach was not only used to predict KrLs curves through micro-dispersion but also used as input to history match the tertiary low salinity water floods. An excellent match was obtained using both the numerical simulation model and the new approach for the oil recovery and pressure drop profile, where two different relative permeability sets were generated in this study for each coreflood. The first observation promotes the premise that a history match of a coreflood can be obtained using different sets of relative permeability curves. In contrast, the Corey exponents, residual oil saturations and endpoints are essential parameters in the history matching of LSWF. The results obtained in this study will help to understand the modelling process involved during oil recovery by LSWF and introduce a new approach to model the effect of LSWF.

UR - http://www.scopus.com/inward/record.url?scp=85063783435&partnerID=8YFLogxK

U2 - 10.2118/195081-MS

DO - 10.2118/195081-MS

M3 - Conference contribution

BT - SPE Middle East Oil and Gas Show and Conference, 18-21 March, Manama, Bahrain

PB - Society of Petroleum Engineers

ER -

Aljaberi A, Sohrabi M. A new approach to simulate low salinity water flooding in carbonate reservoir. In SPE Middle East Oil and Gas Show and Conference, 18-21 March, Manama, Bahrain. Society of Petroleum Engineers . 2019. SPE-195081-MS https://doi.org/10.2118/195081-MS