A laser microwelding method for assembly of polymer based microfluidic devices

Xin Jiang, Soni Chandrasekar, Changhai Wang

Research output: Contribution to journalArticle

15 Citations (Scopus)
221 Downloads (Pure)

Abstract

This paper presents the development of a laser microwelding method for assembly and packaging of polymer based microfluidic devices. In this approach a diode laser was used to weld two poly(methyl methacrylate) (PMMA) substrates together at the interface using a thin film metal spot based intermediate layer design as a localized absorber. A broad laser beam with a top-hat profile was used to carry out the laser microwelding work. The effects of laser power and processing time on the resultant heated affected zone (HAZ) and the melted zone were investigated. For large area welding, a 2×2 array of thin film metal spots were used to investigate the effect of separation between the spots on the resultant interfacial bond between the two polymer substrates. For comparison, a large area titanium film with a comparable size to that of the 2×2 array was also studied. The results show that the discrete film pattern based design is better than a single large area film in order to reduce the effect of substrate distortion resulting from the higher temperature rise associated with the latter. The tensile strength of the laser welded joints was determined to be about 6 MPa for a sample produced using the 2×2 array of circular titanium spot pattern design. The laser microwelding method has been demonstrated successfully in leak-free encapsulation of a microfluidic channel.

Original languageEnglish
Pages (from-to)98-104
Number of pages7
JournalOptics and Lasers in Engineering
Volume66
Early online date18 Sep 2014
DOIs
Publication statusPublished - 1 Mar 2015

Keywords

  • Heat affected zone
  • Laser microwelding
  • Microfluidic devices
  • Poly(methylmethacrylate)
  • Titanium film

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering
  • Atomic and Molecular Physics, and Optics
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'A laser microwelding method for assembly of polymer based microfluidic devices'. Together they form a unique fingerprint.

  • Cite this