A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251

N. Kains*, R. A. Street, J. Y. Choi, C. Han, A. Udalski, L. A. Almeida, F. Jablonski, P. J. Tristram, U. G. Jørgensen, The OGLE collaboration, The MiNDSTEp consortium, The MOA collaboration, The PLANET collaboration

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)

Abstract

Aims. We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge.

Methods. Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q = 1.9 × 10-3. Thanks to our detection of higher-order effects on the light curve due to the Earth's orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously.

Results. We find that the lens is made up of a planet of mass 0.53 ± 0.21 M J orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around ~1-1.5 AU.

Original languageEnglish
Article numberA70
JournalAstronomy and Astrophysics
Volume552
DOIs
Publication statusPublished - Apr 2013

Keywords

  • Galaxy: bulge
  • Gravitational lensing: weak
  • Planetary systems
  • Planets and satellites: detection

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251'. Together they form a unique fingerprint.

Cite this