Abstract
Motivated by the extended Poisson INAR(1), which allows innovations to be serially dependent, we develop a new family of binomial-mixed Poisson INAR(1) (BMP INAR(1)) processes by adding a mixed Poisson component to the innovations of the classical Poisson INAR(1) process. Due to the flexibility of the mixed Poisson component, the model includes a large class of INAR(1) processes with different transition probabilities. Moreover, it can capture some overdispersion features coming from the data while keeping the innovations serially dependent. We discuss its statistical properties, stationarity conditions and transition probabilities for different mixing densities (Exponential, Lindley). Then, we derive the maximum likelihood estimation method and its asymptotic properties for this model. Finally, we demonstrate our approach using a real data example of iceberg count data from a financial system.
Original language | English |
---|---|
Pages (from-to) | 352-369 |
Number of pages | 18 |
Journal | Journal of Applied Statistics |
Volume | 50 |
Issue number | 2 |
Early online date | 1 Nov 2021 |
DOIs | |
Publication status | Published - 25 Jan 2023 |
Keywords
- binomial-mixed Poisson INAR(1) models
- Count data time series
- maximum likelihood estimation
- mixed Poisson distribution
- overdispersion
ASJC Scopus subject areas
- Statistics and Probability
- Statistics, Probability and Uncertainty