A Facile Method for the Non-Covalent Amine Functionalization of Carbon-Based Surfaces for Use in Biosensor Development

Ffion Walters, Muhammad Munem Ali, Gregory Burwell, Sergiy Rozhko, Zari Tehrani, Ehsaneh Daghigh Ahmadi, Jon E. Evans, Hina Y. Abbasi, Ryan Bigham, Jacob John Mitchell, Olga Kazakova, Anitha Devadoss, Owen J. Guy

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


Affinity biosensors based on graphene field-effect transistor (GFET) or resistor designs require the utilization of graphene's exceptional electrical properties. Therefore, it is critical when designing these sensors, that the electrical properties of graphene are maintained throughout the functionalization process. To that end, non-covalent functionalization may be preferred over covalent modification. Drop-cast 1,5-diaminonaphthalene (DAN) was investigated as a quick and simple method for the non-covalent amine functionalization of carbon-based surfaces such as graphene, for use in biosensor development. In this work, multiple graphene surfaces were functionalized with DAN via a drop-cast method, leading to amine moieties, available for subsequent attachment to receptor molecules. Successful modification of graphene with DAN via a drop-cast method was confirmed using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and real-time resistance measurements. Successful attachment of receptor molecules also confirmed using the aforementioned techniques. Furthermore, an investigation into the effect of sequential wash steps which are required in biosensor manufacture, on the presence of the DAN layer, confirmed that the functional layer was not removed, even after multiple solvent exposures. Drop-cast DAN is thus, a viable fast and robust method for the amine functionalization of graphene surfaces for use in biosensor development.

Original languageEnglish
Article number1808
Issue number9
Publication statusPublished - 10 Sept 2020


Dive into the research topics of 'A Facile Method for the Non-Covalent Amine Functionalization of Carbon-Based Surfaces for Use in Biosensor Development'. Together they form a unique fingerprint.

Cite this