Abstract
Piezoelectric actuators are commonly used for nanopositioning due to their high resolution, low power consumption and wide operating frequency, but they suffer hysteresis, which affects linearity. In this paper, a novel digital charge amplifier is presented. Results show that hysteresis is reduced by 91% compared with a voltage amplifier, but over long operational periods the digital charge amplifier approach suffers displacement drift. A non-linear ARX model with long-term accuracy is used with a data fusion algorithm to remove the drift. Experimental results are presented.
Original language | English |
---|---|
Article number | 075016 |
Journal | Smart Materials and Structures |
Volume | 22 |
Issue number | 7 |
DOIs | |
Publication status | Published - 6 Jun 2013 |
ASJC Scopus subject areas
- Signal Processing
- Civil and Structural Engineering
- Atomic and Molecular Physics, and Optics
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering