A comprehensive study on self-assembly and gelation of C13-dipeptides – from design strategies to functionalities

Tan Hu, Zhuo Zhang, Hao Hu, Stephen Robert Euston, Siyi Pan

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
46 Downloads (Pure)

Abstract

Computational and experimental methods were applied to investigate the self-assembly and gelation of C13-dipeptides. A modified aggregation propensity (APS) was introduced to correlate the effects of side chains of amino acids on the tendency to aggregate. From the experimental results, the ranges of 0.156<APS<0.250 seemed to be a proper region for the C13-dipeptides to form hydrogels, while other molecules with higher or lower APS were insoluble or dissociated. As observed from molecular dynamics simulations, the C13-dipeptides firstly form small aggregates through hydrophobic interactions and then rearranged through electrostatic attractions and hydrogen bonds for self-assembly. The C13-dipeptides tended to be anti-parallel packed as shown by hydrogen bonding analyses. Experimental observations and analyses on the structures of C13-dipeptide hydrogels matched the computational conclusions very well. From the 5 selected gelators, i.e. C13-GW, C13-VY and C13-WT, strong - stacking was observed. For C13-WS strong hydrogen bonding was found, and in C13-WY both of strong pi-pi interactions and hydrogen bonds were found. It takes around 90 minutes or longer for C13-dipeptides to form hydrogels and those formed by C13-WY and C13-WS had weak water holding capacities, which might be due to strong intermolecular hydrogen bonding. From rheological studies the C13-dipeptides formed strong chemical gels that were stabilized by strong interactions between the molecular aggregates. These gelators exhibit the potentials to be environmentally-friendly substitutes for the common functionalized peptide gelators.
Original languageEnglish
Pages (from-to)670–679
Number of pages10
JournalBiomacromolecules
Volume21
Issue number2
Early online date3 Dec 2019
DOIs
Publication statusPublished - 10 Feb 2020

ASJC Scopus subject areas

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'A comprehensive study on self-assembly and gelation of C13-dipeptides – from design strategies to functionalities'. Together they form a unique fingerprint.

Cite this