TY - JOUR
T1 - A comparison of periodic travelling wave generation by Robin and Dirichlet boundary conditions in oscillatory reaction-diffusion equations
AU - Sherratt, Jonathan A.
PY - 2008
Y1 - 2008
N2 - Periodic travelling waves are an important solution form in oscillatory reaction-diffusion equations. I have shown previously that such waves arise naturally near a boundary at which a Dirichlet condition is applied. This result has applications in ecology, providing a potential explanation for the periodic waves seen in a number of natural populations. However, in ecological applications the Dirichlet boundary condition typically arises as a simple approximation to a more realistic Robin condition. In this paper, I consider the generation of periodic travelling waves by Robin boundary conditions and how the wave amplitude compares with that arising from Dirichlet conditions. I study a '? - ?' system of equations, which is the normal form of an oscillatory reaction-diffusion system with scalar diffusion matrix close to a Hopf bifurcation. I consider a Robin boundary condition close to the Dirichlet limit, with proximity measured by a small parameter e, and I study the equations as a perturbation problem in this small parameter. I show that the perturbation is singular and that although the solution itself changes at O(e), the amplitude of the periodic travelling wavewhich this solution approaches far from the boundary is unchanged at both O(e) and O(e2). This provides strong justification for the use of the Dirichlet approximation to the Robin condition when studying periodic travelling wave generation in equations of ? - ? type. Finally, I discuss the ecological applications of the results. © The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
AB - Periodic travelling waves are an important solution form in oscillatory reaction-diffusion equations. I have shown previously that such waves arise naturally near a boundary at which a Dirichlet condition is applied. This result has applications in ecology, providing a potential explanation for the periodic waves seen in a number of natural populations. However, in ecological applications the Dirichlet boundary condition typically arises as a simple approximation to a more realistic Robin condition. In this paper, I consider the generation of periodic travelling waves by Robin boundary conditions and how the wave amplitude compares with that arising from Dirichlet conditions. I study a '? - ?' system of equations, which is the normal form of an oscillatory reaction-diffusion system with scalar diffusion matrix close to a Hopf bifurcation. I consider a Robin boundary condition close to the Dirichlet limit, with proximity measured by a small parameter e, and I study the equations as a perturbation problem in this small parameter. I show that the perturbation is singular and that although the solution itself changes at O(e), the amplitude of the periodic travelling wavewhich this solution approaches far from the boundary is unchanged at both O(e) and O(e2). This provides strong justification for the use of the Dirichlet approximation to the Robin condition when studying periodic travelling wave generation in equations of ? - ? type. Finally, I discuss the ecological applications of the results. © The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
KW - Oscillatory system
KW - Perturbation theory
KW - Reaction-diffusion
KW - Wavetrain
UR - http://www.scopus.com/inward/record.url?scp=54049146771&partnerID=8YFLogxK
U2 - 10.1093/imamat/hxn015
DO - 10.1093/imamat/hxn015
M3 - Article
SN - 0272-4960
VL - 73
SP - 759
EP - 781
JO - IMA Journal of Applied Mathematics
JF - IMA Journal of Applied Mathematics
IS - 5
ER -