Abstract
This paper deals with a 6R single-loop overconstrained spatial mechanism that has two pairs of revolute joints with intersecting axes and one pair of revolute joints with parallel axes. The 6R mechanism is first constructed from an isosceles triangle and a pair of identical circles. The kinematic analysis of the 6R mechanism is then dealt with using a dual quaternion approach. The analysis shows that the 6R mechanism usually has two solutions to the kinematic analysis for a given input and may have two circuits (closure modes or branches) with one or two pairs of full-turn revolute joints. In two configurations in each circuit of the 6R mechanism, the axes of four revolute joints are coplanar, and the axes of the other two revolute joints are perpendicular to the plane defined by the above four revolute joints. Considering that from one configuration of the 6R mechanism, one can obtain another configuration of the mechanism by simply renumbering the joints, the concept of two-faced mechanism is introduced.
Original language | English |
---|---|
Title of host publication | ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference |
Publisher | American Society of Mechanical Engineers |
Volume | 5B |
ISBN (Electronic) | 9780791858189 |
DOIs | |
Publication status | Published - 2017 |
Event | 41st Mechanisms and Robotics Conference 2017 - Cleveland, United States Duration: 6 Aug 2017 → 9 Aug 2017 |
Conference
Conference | 41st Mechanisms and Robotics Conference 2017 |
---|---|
Country/Territory | United States |
City | Cleveland |
Period | 6/08/17 → 9/08/17 |
Keywords
- Dual quaternion
- Geometric approach
- Overconstrained mechanism
- Plane symmetric spatial triangle
- Two-faced mechanism
ASJC Scopus subject areas
- Mechanical Engineering
- Computer Graphics and Computer-Aided Design
- Computer Science Applications
- Modelling and Simulation