Abstract
Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.
Original language | English |
---|---|
Article number | 1086 |
Journal | Sensors |
Volume | 18 |
Issue number | 4 |
DOIs | |
Publication status | Published - 4 Apr 2018 |
Keywords
- 3D
- Laser
- Manipulation
- Point clouds
- Underwater
ASJC Scopus subject areas
- Analytical Chemistry
- Atomic and Molecular Physics, and Optics
- Biochemistry
- Instrumentation
- Electrical and Electronic Engineering
Fingerprint
Dive into the research topics of '3D laser scanner for underwater manipulation'. Together they form a unique fingerprint.Profiles
-
Yvan Petillot
- School of Engineering & Physical Sciences, Institute of Sensors, Signals & Systems - Professor
- School of Engineering & Physical Sciences - Professor
Person: Academic (Research & Teaching)