Research output per year
Research output per year
Research activity per year
Research uses computational chemistry to model reaction mechanisms in transition metal organometallic chemistry. Methods employed include density functional theory, hybrid QM/MM calculations and molecular dynamics. We aim to understand challenging bond activation processes (C-H and C-F bond cleavage), rationalise unusual reactivity patterns and model multi-step catalytic cycles. Research is usually carried out in close collaboration with experimental chemists.
We have developed the concept of Ambiphilic Metal-Ligand Assisted (AMLA) C-H activation. In this process an agostic interaction to an unsaturated metal centre combines with H-bonding to a basic co-ligand to facilitate C-H bond cleavage. With aromatic C-H activation at [Pd(OAc)2] this mechanism supersedes the long-proposed Wheland-type intermediate. AMLA can account for facile C-H bond cleavage of both e--deficient and e--rich aromatic substrates at a range of late transition metal centres.
Figure 1. Computed agostic Intermediate in the AMLA-6 C-H Activation of dimethylbenzylamine at [Pd(OAc)2].
We have defined novel ligand-assisted mechanisms for breaking the strong C-F bond of fluoroaromatics. This process involves nucleophilic attack by an e--rich metal centre with addition of a C-F bond over the M-L moiety, where L can be PR3, SiR3 or BR2. For L= PR3metallophosphoranes, [LnM-(PFR3)], are formed as intermediates or transition states. Metallophosphoranes also play a role in the unusual M-F/P-R exchange reactions, such as the interconversion of [RhF(PPh3)3] to [Rh(Ph)(PFPh2)(PPh3)2].
Figure 2. The central role of metallophosphoranes in phosphine-assisted C-F bond activation and F/R exchange processes.
NHC ligands often confer enhanced reactivity on metal complexes. An example is the hydrodefluorination of C6F5H to give 1,2-C6F4H2 catalysed by [Ru(H)2(CO)(NHC)(PR3)2] species. Calculations show this unusual ortho-selectivity arises from a nucleophilic attack mechanism where the hydride ligand (and not the metal) acts as the reacting species. Calculations also aim to understand the stability of NHC ligands towards metal-based decomposition reactions such as C-H, C-C and C-N activation.
Figure 3. Nucleophilic attack of a hydride ligand at the ortho position of C6F5H.
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Macgregor, S. A. (Creator), American Chemical Society, 28 Apr 2016
DOI: 10.1021/acs.organomet.6b00173
Dataset
Macgregor, Stuart Alan (Recipient), 1 May 2019
Prize: Prize (including medals and awards)
Stuart Alan Macgregor (Editorial board member)
Activity: Publication peer-review and editorial work › Editorial activity
Stuart Alan Macgregor (Invited speaker)
Activity: Participating in or organising an event › Participation in conference
Stuart Alan Macgregor (Chair)
Activity: Membership › Membership of committee
Stuart Alan Macgregor (Recipient)
Activity: Other
Stuart Alan Macgregor (Speaker)
Activity: Talk or presentation › Invited talk