1990 …2020

Research output per year

If you made any changes in Pure these will be visible here soon.

Personal profile

Research interests

Computational Organometallic Chemistry

Research uses computational chemistry to model reaction mechanisms in transition metal organometallic chemistry. Methods employed include density functional theory, hybrid QM/MM calculations and molecular dynamics. We aim to understand challenging bond activation processes (C-H and C-F bond cleavage), rationalise unusual reactivity patterns and model multi-step catalytic cycles. Research is usually carried out in close collaboration with experimental chemists.

1. Ambiphilic Metal-Ligand Assisted (AMLA) C-H Activation

We have developed the concept of Ambiphilic Metal-Ligand Assisted (AMLA) C-H activation. In this process an agostic interaction to an unsaturated metal centre combines with H-bonding to a basic co-ligand to facilitate C-H bond cleavage. With aromatic C-H activation at [Pd(OAc)2] this mechanism supersedes the long-proposed Wheland-type intermediate.  AMLA can account for facile C-H bond cleavage of both e--deficient and e--rich aromatic substrates at a range of late transition metal centres.

Figure 1. Computed agostic Intermediate in the AMLA-6 C-H Activation of dimethylbenzylamine at [Pd(OAc)2].

2. Metallophosphoranes and Aromatic C-F Bond Activation

We have defined novel ligand-assisted mechanisms for breaking the strong C-F bond of fluoroaromatics. This process involves nucleophilic attack by an e--rich metal centre with addition of a C-F bond over the M-L moiety, where L can be PR3, SiR3 or BR2. For L= PR3metallophosphoranes, [LnM-(PFR3)], are formed as intermediates or transition states. Metallophosphoranes also play a role in the unusual M-F/P-R exchange reactions, such as the interconversion of [RhF(PPh3)3] to [Rh(Ph)(PFPh2)(PPh3)2].


Figure 2. The central role of metallophosphoranes in phosphine-assisted C-F bond activation and F/R exchange processes.

3. Ruthenium N-Heterocyclic Carbene (NHC) Complexes in Catalysis

NHC ligands often confer enhanced reactivity on metal complexes. An example is the hydrodefluorination of C6F5H to give 1,2-C6F4H2 catalysed by [Ru(H)2(CO)(NHC)(PR3)2] species. Calculations show this unusual ortho-selectivity arises from a nucleophilic attack mechanism where the hydride ligand (and not the metal) acts as the reacting species. Calculations also aim to understand the stability of NHC ligands towards metal-based decomposition reactions such as C-H, C-C and C-N activation.


Figure 3. Nucleophilic attack of a hydride ligand at the ortho position of C6F5H.

Roles & Responsibilities

Research Group Contact Details

Fingerprint Dive into the research topics where Stuart Alan Macgregor is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 5 Similar Profiles

Co Author Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output

Accurate computed spin-state energetics for Co(iii) complexes: implications for modelling homogeneous catalysis

Neale, S. E., Pantazis, D. A. & Macgregor, S. A., 21 May 2020, In : Dalton Transactions. 49, 19, p. 6478-6487 10 p.

Research output: Contribution to journalArticle

Open Access
  • 1 Downloads (Pure)

    A Structurally Characterized Cobalt(I) σ-Alkane Complex

    Boyd, T. M., Tegner, B., Tizzard, G., Martinez-Martinez, A., Neale, S., Hayward, M., Coles, S., Macgregor, S. & Weller, A. S., 6 Apr 2020, In : Angewandte Chemie International Edition. 59, 15, p. 6177-6181 5 p.

    Research output: Contribution to journalArticle

  • Unexpected Vulnerability of DPEphos to C-O Activation in the Presence of Nucleophilic Metal Hydrides

    Cybulski, M., Beattie, N., Macgregor, S., Mahon, M. & Whittlesey, M., 19 May 2020, In : Chemistry - A European Journal.

    Research output: Contribution to journalArticle

  • Zn-Promoted C-H Reductive Elimination and H2 Activation via a Dual Unsaturated Heterobimetallic Ru-Zn Intermediate

    Miloserdov, F. M., Rajabi, N. A., Lowe, J. P., Mahon, M. F., Macgregor, S. A. & Whittlesey, M. K., 1 Apr 2020, In : Journal of the American Chemical Society. 142, 13, p. 6340-6349 10 p.

    Research output: Contribution to journalArticle

  • A Career in Catalysis: Odile Eisenstein

    Balcells, D., Clot, E., Macgregor, S. A., Maseras, F. & Perrin, L., 1 Nov 2019, In : ACS Catalysis. 9, 11, p. 10375-10388 14 p.

    Research output: Contribution to journalArticle

  • Prizes

    Ludwig Mond Award

    Stuart Alan Macgregor (Recipient), 1 May 2019

    Prize: Prize (including medals and awards)

  • Activities

    Structure and Bonding (Journal)

    Stuart Alan Macgregor (Editorial board member)
    1 Jan 201931 Dec 2022

    Activity: Publication peer-review and editorial workEditorial activity

    Faraday Discussions

    Stuart Alan Macgregor (Invited speaker)
    2 Sep 2019

    Activity: Participating in or organising an eventParticipation in conference

    Access to EPSRC Central facilities

    Stuart Alan Macgregor (Recipient)
    13 Dec 20181 Jun 2021

    Activity: Other

    Organometallic Chemistry in Confined Spaces

    Stuart Alan Macgregor (Speaker)
    6 Sep 2018

    Activity: Talk or presentationInvited talk

    44th International Conference on Coordination Chemistry (ICCC 2020) (Event)

    Stuart Alan Macgregor (Chair)
    1 Nov 201831 Jul 2020

    Activity: MembershipMembership of committee