Research output per year
Research output per year
Dr
EH14 4AS
United Kingdom
Research activity per year
With a new spectroscopic technique (CELIF), co-developed in our group, we aim to advance the understanding of photochemical reactions at ice surfaces relevant in the earth's atmosphere. The results will reveal the differences between gas-phase and surface photodissociation for the system nitric acid on ice. The CELIF technique is open to the investigation and control of catalytic reactions and reaction dynamics on thin films, topical areas we aim to extend our research to.
In our new surface apparatus we study the photodissociation dynamics of atmospherically relevant molecules such as nitric acid on ice surfaces, shedding light into its importance in explaining pollutant levels in the polar atmospheric boundary layer. In order to detect photodissociation products desorbed from surfaces under near-ambient conditions (210 – 273 C), we utilise spectroscopic methods such as cavity ring-down spectroscopy (CRDS) and laser-induced fluorescence (LIF).
We developed a novel spectroscopic technique dubbed cavity-enhanced laser-induced fluorescence (CELIF) where we combine CRDS and LIF in such a way that we maintain the high sensitivity of LIF and at the same time achieve absolute calibration in terms of absorption coefficients through the simultaneous cavity ring-down measurement. We successfully demonstrated the technique in the detection of SD radicals in molecular beams down to 215 molecules in the probe volume. CELIF is particularly powerful in the measurement of absolute absorption coefficients in localised detection volumes.
Break-down of the Born-Oppenheimer approximation is shown upon scattering of vibrationally excited NO from a Cs/Au surface. The observed electron emission scales inversely with the velocity of the NO molecules attributed to a mechanism we call vibrational auto-detachment. The large amplitude motion (NO, v=18) close to the metal surface leads to a surface-to-molecule electron transfer and subsequent emission. The probability of this process increases with interaction time (low velocity).
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):
Research output: Contribution to journal › Article › peer-review
Research output: Patent
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to journal › Article › peer-review
Nahler, Nils Hendrik (Recipient), 2008
Prize: Fellowship awarded competitively
Nils Hendrik Nahler (Speaker)
Activity: Talk or presentation › Invited talk
Nils Hendrik Nahler (Examiner)
Activity: Examination › External Examiner
Nils Hendrik Nahler (Chair)
Activity: Membership › Membership of committee
Nils Hendrik Nahler (Chair)
Activity: Membership › Membership of peer review panel