Arno Manfred Kraft

Dr

  • EH14 4AS

    United Kingdom

1988 …2024

Research activity per year

Personal profile

Research interests

Polymer Synthesis and Microreactors Our research lies at the borderline between disciplines. In the past, we investigated electroluminescent polymers for application in organic light-emitting diodes, shape-memory polymers and polymeric supramolecular receptors capable of binding biologically interesting ions. In previous years, we have looked at the effect nanoparticle fillers have on the mechanical properties of polymers, the chemistry in microreactors and methods for determining important physicochemical properties of pharmaceutical drugs. 1. Polymer–Filler Nanocomposites Polymer nanocomposites based on sub-micrometer fillers with high surface-to-volume ratios are currently studied intensively in both academia and industry.  A variety of silica nanoparticles are commercially available and their high surface-to-volume ratio makes them compatible with many polymer matrices. In collaboration with Dr V. Arrighi, we have synthesised various polymer–filler nanocomposites where the polymer is grafted from the surface of nanoparticles using techniques such as atom-transfer radical polymerisations (ATRP).  Recent results show that covalent attachment of polymer chains to silica nanoparticles is particularly effective in improving the thermal and dynamic mechanical properties of the composite at elevated temperatures. Figure 1. Procedure for grafting a polymer from the surface of a silica nanoparticle. 2. Chemistry in Microreactors Microreactors allow chemical reactions to be optimised on a small scale, with improved safety, excellent temperature control, and accelerated reaction times using high reagent concentrations or superheated solvents. Promising results can be achieved even with a simple microreactor assembly consisting of syringes, ordinary laboratory tubing, a mixing unit, and syringe pumps. Figure 2. Comparison of an organic synthesis carried out in a conventional glass vessel versus a microreactor. 3. Permeability Measurements as a Model for Drug Absorption in the Body In collaboration with , we are measuring important physicochemical properties for pharmaceutical drugs, such as pKa and partition coeffient log P using standard lab equipment and Excel spreadsheets. More recently, we have looked at dissolution rates and permeabilities of active pharmaceutical ingredients. These are two important parameters in modern drug development that make it possible to predict, if not simulate, the absorption of a pharmaceutical drug in the body. For this, we have developed a semi-automatic method to determine drug permeability across a lipid-coated membrane based on a diffusion cell, a syringe/peristaltic pump and a UV flow cell.Dr. N. M. Howarth Figure 3. Set-up for measuring the permeability of a drug across a lipid-coated membrane using a diffusion cell, a pump and a UV flow cell.

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being

Fingerprint

Dive into the research topics where Arno Manfred Kraft is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or